

EE3 Group Project 2004/05

An ECG Telemetry System
Part 2: Design

Martin Jackson
Shyam Patel

Ramanan Rajaraman
Amrit Sharma
Mark Thomas

Ashwin Thurairajah

EE3 Group Project – ECG Telemetry System

i

Executive Summary

It was established in the Project Inception Report that there is a huge demand for portable ECG
equipment which can record a patient's heart activity continuously over a long period of time, while
allowing the patient to live a relatively normal life at home and not have to stay in a hospital ward.

Our solution is a complete system, purchased by a hospital or clinic. When a patient has a heart
problem which cannot be immediately diagnosed:

• The patient will be given a portable ECG device to wear which monitors his heart.

• The patient can upload the data recorded by the device to the hospital via the internet, and is
prompted to do so at regular intervals.

• This data is stored on a central computer in the department, and automatically analysed for
irregularities.

• When irregularities are found in the patient’s data, his / her doctor is sent an email.

• The doctor can then review the ECG data easily and quickly to decide upon a further course of
action.

The portable ECG device can record up to a full 12-lead ECG. The data is stored to a Compact Flash
card, which can be removed and read by a PC, which is used to send the information back to the
hospital. By having a large memory, the patient can wear the equipment for the whole day or longer,
living an unrestricted life, and just uploading data a couple of times a day. The device has an LCD
display and shows the patient’s heart rate in real time. An Atmel Atmega128 processor and an Altera
Flex 10K FPGA device have been chosen as the basis of this design.

The software product is designed for a Local Area Network in a hospital department. Data being
uploaded by a patient is received by a central server in the department, and is automatically analysed
and stored to a database. This way, there is minimal risk of ECG data being lost or accidentally
deleted.

The ECG data collected is processed to try and find irregularities, which can help the doctor to make a
diagnosis. The data is processed in two stages. First, the standard ECG parameters such as beat rate, S-
T interval and QRS duration are calculated using signal processing techniques. This parameter data is
then searched to find heart beats which show combinations of irregularities indicative of certain heart
conditions.

Once the doctor responsible for a patient has been warned that irregularities have been found, he can
use any PC within the departmental or hospital network to view the ECG data and make a diagnosis.

This solution has been designed to be flexible to further development, and has the potential to be an
extremely successful product.

2004-5 EE3 Group Project: An ECG Telemetry Device
Part 2: Design

Martin Jackson, Shyam Patel, Ramanan Rajaraman, Amrit Sharma,
Mark Thomas & Ashwin Thurairajah

ii

EE3 Group Project – ECG Telemetry System

1

1 Top-Level Designs

Scenario:

The patient experiences intermittent heart
problems. The doctor’s first decision is to take
the patient’s ECG (on a standard hospital
system). If the ECG is normal then the doctor
would recommend round-the-clock monitoring
over a given period of time in order to diagnose
the irregular and unpredictable problem. Given
that certain types of arrhythmia (irregular
heartbeat) can occur in almost any time interval
i.e. from between hours to weeks then the
patient must be able to lead a totally
unrestricted lifestyle.

Problems:

1. A cardiologist would not want to sit and
read hours worth of ECG data for several
patients.

2. Should the data be processed in real-time or
logged and then batch processed?

Solution:

The solution to the first problem also provides a
solution to the second one. Since a cardiologist
would not want to read hours worth of ECG
data, detection software is needed. As we will
see in section 4: Filtering, Parameter Detection
and Classification of the ECG Waveform, all of
the algorithms use anti-causal equations i.e.
they use future values in the ECG data. This is a
critical problem in real-time processing of the

ECG. Consider the following:

• Real-time processing cannot use anti-
causal equations while batch processing
can. Therefore more efficient parameter
detection algorithms can be used if the data
is batch processed.

• Standard full ECG data, sampled at 500Hz,
12 bits per sample and 12 leads, has a
bandwidth of 72Kbits per second
(neglecting the effect of noise and ignoring
any bit error rates) for a real-time system.
This is highly impractical as any
deterioration in the data rate of the
communication system would render the
product unreliable. Batch processing gets
completely around this problem.

• Batch processing makes more efficient use
of both the network and the processor than
real-time processing. Therefore more
patients can be logged with one system.

• With real-time processing, the patient
would lead a very restricted lifestyle e.g.
cannot use, say, the London underground
or the patient may even have to stay within
meters of the terminal that transmits the
data to the medical practitioner. This is
highly impractical given that the patient
can be monitored for weeks!

• Any detrimental problems such as
myocardial infarction, coronary heart
disease, etc. (i.e. precursors to a major
heart attack) would be initially detected by

Solid State
Storage Local PC

Physician’s PC
WAN Connection Physician

Web Server

DSP: Filtering &
Irregularity
Location

Patient Web
Server

WAN Connection

ECG Server

Acquisition Device

User input ElectrodesPhysician input

Figure 1: System top-level design

EE3 Group Project – ECG Telemetry System

2

the doctor. Therefore we’re mainly
concerned with diagnosing diseases that
cannot be detected by a conventional ECG
i.e. irregular heart conditions that are
usually treated over a period of time.
Hence real-time data transfer poses no
advantage over data logging.

Conclusion:

There is no real advantage in sending an ECG
in real time for the types heart condition this
project is aimed towards. Since most irregular
problems such as tachycardia, bradhycardia,
atrial fibrillation, etc. do not require emergency
attention i.e. the patient can be treated over the
course of a few days/weeks. However it would
be useful for the patient to know when his/her
heart beat is reaching a dangerous level (note
that proper diagnosis requires full ECG data).
Therefore the proposal is a real-time heart beat
monitor, that simply tells the patient when
his/her heart-rate exceeds an acceptable limit,
coupled with a batch processing ECG system
with diagnostic tools to aid the doctor in
specifically determining the disease. In this
way the patient would know if, say, he/she
may have had a minor heart attack or an
arrhythmia while the doctor would have the
proper ECG data to diagnose the patient.

2 Acquisition Device

2.1 Design Specifications

The design specification for the acquisition
device is that it should be capable of
recording up to 12 channels, 12 bits per
channel at 500Hz, onto a memory card which
is readable by a standard PC equipped with a
suitable card reader. An LCD display with an
embedded menu system should provide
control over all the features. The following
designs comply fully with that specification.
A Compactflash card was chosen because it
offered the largest amount of storage for the
lowest cost (a 4GB card costs ~£250 at the
time of writing). The parallel interface is
compatible with the IDE bus and is relatively
simple to drive with a microcontroller and
some glue logic. It is entirely possible to
replace the Compactflash with an ATA hard
disk for storage of up to 137GB of data!

The filesystem is fully compatible with the
FAT16 specification and is PC readable, with

support for long filenames. ECG files are stored
in a .ecg file format which we have defined
ourselves (see section 2.14).

The user interface consists of a 4x20 character
LCD display and four push buttons to control
the embedded menu system. There are two
modes of operation: physician mode and patient
mode. Physician mode allows the configuration
of the device on a more complex level, giving
options such as the number of channels to
record and event stimulation parameters.
Patient mode allows the patient to flag up
events – such as experience of chest pains or
the beginning of exercise – in a simple and
user-friendly way. A switch located under a
flap ensures that the patient never accidentally
enters the physician menus. All configuration
data can be stored in the EEPROM, or
alternatively on the Compactflash disk as a
config.dat file. This file can be edited using a
small Windows program to save having to
navigate menus on the device itself.

Figure 2: Top-Level Design of Acquisition Device

ISP Programming
interface

Microcontroller: Atmel
ATmega128

LCD display (20x4 line Hitachi
HD44780 compatible)

RxD, TxD

RS-232

Address and data bus

IDE Interface (8 to 16-bit
translator)

Compactflash / ATA
hard disk

IDE cable

User push buttons

Nyquist filter

12-bit ADC

8-12 bit translator

Multiplexer

SRAM buffer

Differential Amplifiers

I2C expansion bus

Patient /
physician mode

EE3 Group Project – ECG Telemetry System

3

2.2 Power Supply

This device is entirely self-contained and
battery-powered, with no external supply
present during normal operation. Care has been
taken to keep power consumption low, helped
largely by running the entire system from a
single regulated 3.3V supply. The battery itself
has not yet been chosen, but the Linear
Technology LT1300 switched-mode power
supply can regulate a 3.3V supply with input
voltages from 1.8-10V, allowing for a wide
range of batteries to be used.

Care has also been taken to decouple the supply
rail at the input of the devices. Each device has
three parallel capacitors: 10µF, 10nF and
910pF; three are used because the inductive
reactance of high-value devices increases with
frequency, so a 10µF capacitor alone would be
insufficient to fully decouple the supply.
Analogue components also use an HF70 ferrite
choke to provide further supply noise
suppression.

The high-gain analogue components should be
encased in a screened aluminium enclosure.
The system itself can be placed in a plastic box
as the digital circuitry would not be
significantly affected by ambient noise. The
design of these enclosures has not yet taken
place since decisions cannot be made until a
PCB has been designed.

2.3 ECG Leads

We will use a non-invasive self-adhesive pad
that can be connected to the electrodes for
measuring ECG signals. As human skin is a
poor electrical conductor, a low resistance gel
will be applied between the skin and pad to
improve conductivity.

The 12 leads used for ECGs consist of 6 limb
leads and 6 precordial leads. The 6 limb leads
can be broken down into 3 bipolar limb leads
denoted I, II and III and 3 augmented unipolar
limb leads denoted aVR, aVL and aVF.

The bipolar limb leads are formed by
connecting a lead between two sensors placed
on the chest; they form a vector with the
positive end being at one electrode and negative
at the other. The augmented unipolar leads use
one of the electrodes (i.e., either left foot, right
arm, or left arm) as positive and the other two
electrodes as negative (or common ground) by

Lead Sensor used Sensor used as -
I Left arm Right arm

II Left foot Right arm

III Left foot Left arm

aVR Left arm Left foot and right

aVL Right arm Left foot and left

aVF Left foot Left arm and right

Figure 3: ECG lead placement

Table 1: Limb electrode placement

Figure 4: Cardiac Vectors

EE3 Group Project – ECG Telemetry System

4

connecting them together. Table 1 illustrates all
the inter-connections for limb leads:

The precordial leads are denoted V1, V2, V3,
V4, V5 and V6. They measure the amplitude of
the cardiac current in an anterior-posterior form
as opposed to the limb leads that measure
signals in a horizontal fashion. The positioning
of the leads is described in Table 2.

2.4 Amplifiers

The signal from the electrodes consists of a
small AC signal voltage (up to 5mV), a large
AC common-mode component (up to 1.5 V)
and a large variable DC component (up to 300
mV). The main performance characteristics of
ECG amplifiers for this application can be
summarised as follows:

• -3dB points at 0.05 and 100Hz
• Tolerance of DC input voltage (of level

depending on the type of electrode)
without input stage saturation.

• Overall gain in the range 200-1000 (40-
60dB), with a maximum input signal of
about ±5mV in without output stage
saturation.

• Differential input impedance >5MΩ in
the entire frequency band

• Common-mode rejection ratio (CMRR)
>60dB

• For a two-electrode amplifier, the
inputs should tolerate at least 3µA
common mode current per input,
without saturation of the input stage

• Low power consumption (<1mW)

The design, based upon a technical note in
Medical & Biological Engineering &
Computingi, exceeds these specifications and
runs on a single-ended 3.3V supply. The design
would be considerably simpler and cheaper if

higher-voltage, double-ended supplies were
available (±10V or so). However, battery life in
this system is key, so the number of regulated
supplies must be kept to a minimum since no
regulator is 100% efficient. The supply voltage
of the digital components cannot be anything
other than 3.3V, so the more flexible analogue
circuitry has had to work around this. The
following is a brief explanation to its operation;
consult the reference for more detail.

Figure 5 shows the simplified amplifier circuit.
Each of the differential inputs is buffered and
AC decoupled by capacitor C and resistors R3,
much like an instrumentation amplifier. The
differential amplifiers which follow each
amplify half the differential input signal and
their outputs are added to form the amplified,
single-ended signal referenced to a 0V supply
rail.

Mathematically,

)(
21

2

)(

3

3
inNinPd

dcbadout

VV
CRs

CRsA

VVVVAV

−
+

=

−+−=

The high-pass cutoff frequency is defined by
2R3C. Figure 6 shows a more detailed circuit.
A1-4 form the input stage; A1 and A2 are the
main gain stages and A3 an A4 are unity gain
buffers. R3 and R4 are virtually in parallel as
the A3 and A4 input voltages equal their output
voltages, so:

3
2

3
321

2

3

3

2

1 RRRR

R

R

I
R
RIII

R
R

I
I

+=+=

=

The A1 and A2 amplifiers take one-half the
differential AC signal each. The DC component
is filtered by C and appears at the A3 and A4
outputs. The second stage is a four-input adder /

Lead Placement

V1 Right 4th intercostal space

V2 Left 4th intercostal space

V3 Halfway between V2 and V4

V4 Left 5th intercostal space, mid-clavicular line

V5 Horizontal to V4, anterior axillary line

V6 Horizontal to V5, mid-axillary line

Ad

+

-

+

+

-

AdR3

R3

C

a

b

c

d

+

-

Figure 5: basic amplifier circuit concept

Table 2: Precordial electrode placement

EE3 Group Project – ECG Telemetry System

5

subtractor stage.

2
11,23 with

||
1

32

1

R
RARR

RR
RA dd +=>>+=

Without derivation, the CMRR is given by:

δ4
5.1

dACMRR =

Where δ is the tolerance of the R4 resistors
used. With Ad=200, the real minimum CMRR is
60.3dB. One of the specifications states that the
amplifier should tolerate common-mode
currents of at least 3µA per input. With a 3.3V
supply voltage this cannot be done with passive
components. As a result the common mode
input impedance is reduced by voltage-
controlled current sources using negative shunt-
shunt feedback, seen in Figure 7. If the current
source transconductance is gm, then:

)21(2
2

1
3CRs

gm
Z

gm
Z dcm +==

Where Zcm and Zd are the common-mode and
differential input impedances respectively.

Figure 8 shows the practical implementation of
this amplifier. It is powered from a single 3.3V
supply voltage. The signal ground is set to one-
third of the supply voltage to take account of
the common-mode voltage range. The diodes
prevent latch-up of the circuit, RC networks
decouple the circuit from RF noise and the C5
capacitors ensure circuit stability. Figure 9
shows the simulated gains and differential and
common-mode input impedances of the circuit.
The frequency band is 0.05-100Hz, can tolerate
up to 50µA of common-mode currents and up
to about 2V DC differential signal. The current
consumption is ~150µA (~0.45mW) at 3.3V
supply voltage. OPA2336 low-power opamps
were used.

A twelve-lead ECG comprises three bipolar
limb leads, three augmented unipolar limb leads
and six precordial leads. Referring to the
digram of Figure 3, the bipolar leads are related
vectorially:

2

2

2
)(

IIIIIaVF

IIIaVL

IIIaVR

IIIIII

+
=

−
=

+−
=

+=

The precordial leads have a virtual reference,
which is the sum of the left arm, right arm and
left leg electrodes:

LLLARAVR ++=

It is therefore possible to derive all twelve
channels from eight leads. Figure 11 shows a

+

-

A1

+

-

A3

+

-

A4

+

-

A2

A5

+

-

R3

R3

R4

R4

R4

R4 R4

R4

C

a'

b'

c'

d'

+

-

Figure 6: Detailed basic amplifier concept

+

-

+

-

gmV0

gmV0

R3

R3

C

+

-

Figure 7: Amplifier with bidirectional current
sources connected to inputs

R1

R1

R2

R2

EE3 Group Project – ECG Telemetry System

6

macromodel for the eight amplifiers (where
each amplifier is the circuit of Figure 8), from
which the extra four channels may be derived in
software.

The virtual reference adder is a unity-gain
buffer with three inputs connected together via
100K resistors, referred to in ECG circles as a
Wilson Terminalii.

+

-

100K

100K

100K

Figure 10: Virtual reference circuit

Figure 8: Practical amplifier circuit

Figure 9: Simulated gain, differential impedance
and common-mode impedance

Figure 11: Input amplifier macromodel

EE3 Group Project – ECG Telemetry System

7

2.5 Multiplexers

The analogue inputs are time-division
multiplexed so only one Nyquist filter and A/D
converter need be used. An Analog Devices
ADG708 is used to multiplex the eight channels
into one.

2.6 Nyquist Filter

A 12-bit signed system like this one has a range
of -2048 to +2047, so in order to ensure that the
signal is sufficiently attenuated to prevent
spectral leakage after sampling, a filter with
gain 1/4096 (1/2 LSB or -72dB) at 250Hz is
required. Signals up to 100Hz need to be
preserved, so the transition band must be
between 100 and 250Hz.

There are several different approaches to
implementing the filter stage. Table 3
demonstrates the arguments for and against the
various approaches.

Given that cost was our primary consideration
with product size and development time being
secondary we decided to design the filter from
scratch.

The first step of the design process involved
selecting the filter type. The following is a brief
discussion of the common filter
implementations:

Butterworth
Very flat pass band and good roll-off. Good
phase response.

Chebyshev
Ripples in pass band with excellent roll-off.
Good phase response.

Elliptic
Very flat pass band with excellent roll-off. Poor
phase response.

Bessel
Flat pass band with poor roll-off. Excellent
phase response.

The Nyquist filter is an 11th-order Butterworth
design and attenuates the signal by 88dB at
250Hz and has a passband gain overshoot of
less than 0.5dB.

Based on the design specifications, the best
implementation was the Butterworth filter.
Calculations showed that an 11th order active
filter was necessary for the specifications to be
met. Refer to Appendices I and II for full
calculations and simulation results. The filter
was implemented by cascading second order
sections in a Sallen Key configuration. This
enabled a steep attenuation curve with a sharp
knee to be obtained.

The op-amps used in the active filter had to
have a gain bandwidth product of at least 100
times the cut-off frequency and low noise. In
order to reduce the component inventory and
keep power consumption, the OPA2336
opamps used in the input amplification stage
will be used for the Nyquist filter. Standard
plastic film capacitors will be used due to their
low cost.

Type Description Pros Cons

Switched-capacitor
filters

Enables implementation
of various filter orders

Small size permits
miniaturization of product

Requires a pre-filter at the
input for accurate
performance

Linear active filter
chips

Standard chips that can
be customized to
implement any filter
type or order

Reduced development
time & highly flexible as
changes can be
implemented quickly.

High cost

Custom-built Construction of filter
from rudimentary
components

Low cost Inflexible: changes would
require recalculation of
component values. Lengthy
development time.

Table 3: Filter types

EE3 Group Project – ECG Telemetry System

8

2.7 A/D Converter

The A/D converter has to be capable of
sampling at 500Hz, 12 bits per sample. The
device chosen is an Analog Devices AD7854. It
is run in byte mode, whereby two consecutive
8-bit reads are made by controlling the HBEN
signal on the device. A conversion is started by
writing to one of the A/D’s registers, and the
completion is flagged by a CPU interrupt. The
A/D converts at n times the sampling
frequency, where n is the number of channels
(nominally 12). It operates from a single-ended
3.3V supply like every other device in the
system.

2.8 CPU

The CPU is an Atmel Atmega128. This is a
low-power RISC microcontroller which
operates at 3.3V and offers a UART interface,
SPI interface, multiple timers, five 8-bit I/O
ports, A/D functions, 4KB of RAM, 512 bytes
of EEPROM and 128KB of Flash program
memory. The CPU controls the multiplexer,
A/D converter, screen, user I/O and the IDE bus
so the load placed by each of these peripherals
must be kept to a minimum. For speed and
expandability, all external peripherals are
mapped to the CPU’s external memory space
via the 8-bit bus. Alternatively, the serial I2C
bus could have been used, greatly reducing the
number of wires to be routed, but at the same
time placing extra loading on the processor. An
I2C header plug has been included in case
peripheral devices need to be added quickly.

2.9 SRAM Buffer

If time permits, an SRAM buffer will be added
to the system to reduce the frequency at which
the disk must be accessed, saving on power
consumption. This is not of great importance to
the project and will only be implemented if it is
certain that no improvements or debugging
need to be done elsewhere.

2.10 Program Files

The programming task involved with this
project accounts for a significant proportion of
design time. A GNU compiler and debugging
tools are available free and open-source. Their
syntax is almost identical to the GNU ‘gcc’ C
compiler and is therefore compatible with all
GNU-based editorsiii.

A freeware programmer, PonyProgiv, will be
used to program the IC via the CPU’s In-
System-Programming (ISP) port using the PC’s
serial port.

The program is split up into approximately 18
files (9 c files and 9 headers). They are
described in Table 4 and put into a hierarchy in
Figure 12. A header file, global.h, is called
by every other file. It consists almost entirely of
#define statements such as the peripheral
memory map and global variables.

2.11 Modes of Operation
The software allows for many different
configurations of the device, but its operation
can be categorised into two main groups: Holter
and Event. The Holter monitor records ECG
data continuously and is useful for people who
experience frequent heart problems. It requires
large amounts of storage space.

An Event Monitor is triggered either when the
user presses a button or the device
automatically detects a problem, such as
tachycardia or bradhycardia. They require less
memory as they only record for short periods of

File Description

ecg.c The ‘main’ program which makes
calls to all driver functions. It
contains all the boot and self-test
routines, interrupt service routines
and the main program loop.

user.c Draws the embedded menu system
and responds to user input. Contains
functions for reading and writing
configuration data.

uart.c Serial driver for debugging.

fat.c Drivers for the FAT16 filesystem.

ata.c The driver for controlling an ATA
disk or Compactflash card.

a2d.c Driver for the analogue-to-digital
converter.

lcd.c Driver for the LCD and some
functions for controlling the cursor.

i2c.c Driver for I2C bus.

systimer.c Contains low-level timing routines.

Table 4: File descriptions

EE3 Group Project – ECG Telemetry System

9

High Level Code
(ecg.c, global.h)

System Timer
(systimer.c,
systimer.h)

LCD Driver
(lcd.c, lcd.h)

A/D Driver
(a2d.c, a2d.h)

User Driver
(user.c, user.h)

I2C Driver
(i2c.c, i2c.h)

UART Driver
(lcd.c, lcd.h)

FAT Driver
(fat.c, fat.h)

ATA Driver
(ata.c, ata.h)

Figure 12: Code Hierarchy

time. Some have a ‘loop’ memory which
continuously records data then throws it away if
it is not required. If time permits and it is
possible to add an SRAM buffer to the device
then a loop memory will be implemented.

2.12 IDE / ATA Busv vi vii

The IDE (Integrated Drive Electronics) bus,
commonly referred to as the ATA (AT
Attached) bus, is an extension of the PC’s ISA
(Industry Standard Architecture) bus, whose
timing characteristics bear much resemblance to
the microcontroller’s 8-bit expansion bus. A
Compactflash can be wired in such a way that it
is compatible with this bus. From a controller
point of view an IDE interface can be described
as a set of I/O ports:

• A 16-bit I/O bus

• Two /CS lines

• A /WR and /RD line

• Three address bits

• One interrupt

A few extra lines exist both for backwards
compatibility and modern enhancements, but
for the purposes of this project the signals listed
above minus the interrupt line will be used.
With the exception of the 16-to-8-bit
conversion, the IDE bus can be driven directly
from the microcontroller’s memory-mapped 8-
bit expansion bus. The addressing system
allows for disks of up to 137GB to be used.
Further enhancements could increase this to

2TB, but is unnecessary given the amounts of
data involved.

ATA addressing involves splitting the disk up
into 512-byte memory allocations called
sectors. This means that 512 bytes is the
smallest amount of data that can be read or
written at any time. Refer to Appendix IV for
further information about the ATA bus and how
it is attached to this system.

2.13 FATviii ix x xi xii

Further up in the disk access hierarchy is the
file allocation table. This is a method for
structuring a drive in a way that Windows can
understand.

There are four filesystems compatible with
Windows XP, namely FAT12, FAT16, FAT32
and NTFS. NTFS was immediately ruled out
because of unnecessary complexity which
exists to provide compatibility with UNIX
filesystems and added security. FAT32 was
ruled out for similar reasons, though may be
implemented if time permits to allow for disks
of up to 137GB to be used. FAT12, which has
the advantage of being simple to use, is limited
to a maximum disk size of 16MB.

FAT16 provides a good compromise between
the simplicity of FAT12 and the large disk
capability of FAT32. The upper limit for a
FAT16 partition is 2.5GB. If FAT32
compatibility is implemented, it will be
necessary to keep the FAT16 drivers as FAT32
cannot be used on disks smaller than 512MB.
From the perspective of efficiency, it makes
sense to make the transition from FAT16 to
FAT32 at the 512MB boundary. Refer to
Appendix V for a detailed comparison of the
different types of FAT filesystem.

2.14 File Format
The ECG files have an .ecg extension and
contain time-division-multiplexed data of up to
12 channels within one file.

The file is divided up into 2KB (four sector)
frames. It is sensible to use frames of multiples
of two sectors to simplify the FAT driver
design and debugging. The length of a frame
was further determined by RAM constraints;
only 4KB of RAM is available on the processor
and at least 512 bytes will be necessary to run
the display, ATA driver and filesystem.

EE3 Group Project – ECG Telemetry System

10

The following is the definition of the ECG
frame. The lengths assume a 12-bit, 8-channel
recording (the other four would be derived later
in software), where 168 sets of samples fit into
2KB with a 32-byte header.
Syntax Length
ecg_frame { 2048

frame_sync; // ‘ECGD’ 4
version; // Firmware version 1
device_id; // ASCII text 15
event; // Enumerated 1
mode; // Enumerated 1
time; // ms since 01/01/1970 8
n_samples; // Nominal 168 1
channels; // 8-bit field 1
for (i=0; i<n_samples; i++) 2016
{

for(j=0; j<channels; j++) 8
{

channel_sample[i][j]; 1.5
}

}
padding; X

}

Frame sync
A signal ‘ECGD’ (ASCII encoded). Should be
rare enough to act as a framing signal.

Version
Number indicating firmware version.

Device ID
Text field identifying the name of the
acquisition device

Event
Enumerated type of events e.g. tachycardia.
Types yet to be defined.

Mode
Enumerated type defining holter / event or
whatever other type we define. Types yet to be
defined.

Time
No of milliseconds after 1st January 1970. This
is a standard for measuring absolute time, in
particular with the Java time and date library.
Absolute timing is useful if the files are to be
truncated. With relative timing this would be
much more difficult and would require on-the
fly calculation to determine the absolute time
code.

Samples per frame
Number of samples contained within the ECG
frame (168 for 12 channels @ 12 bits)

Channels
8 bits stating which channels have been used.

(MSB) bbbb bbbb (LSB)

Where b is 0 on channel not recorded, 1 on

channel recorded. x is ignored. Order is V6, V5,
V4, V3, V2, V1, III, I, where I corresponds to
LSB.

Padding
Pads out to fill 2K. None required in this
example case.

Using this coding scheme, a 12-lead ECG,
stored as eight discrete channels + header,
sampled at 500Hz requires a bandwidth of
73.142KBits/sec, resulting in file sizes of
31.14MB per hour, 771MB per day and 5.27GB
per week.

2.15 Connectivity

2.15.1 LCD Display

The LCD display is a 20x4 line, alphanumeric,
memory-mapped device, communicating with
the CPU through the 8-bit data bus. A set of
registers defines the type of operation (left-to-
right, right-to-left, flashing cursor etc), and the
cursor (pointer) position. The driver complies
with the Hitachi HD44780 character-mapped
LCD specification, with the exception that a
3.3V device must be used due to power supply
constraints.

As an aside, OLED screens with HD44780
compatibility are being manufactured.
However, an emissive display is not feasible
due to excessive power consumption; a
reflective display with optional backlight would
be a better option.

2.15.2 User I/O

In order to use the minimum number of push
buttons (for design simplicity and ease of use),
four buttons, aligned with the bottom line of the
display, are used to navigate the menus. The
text on the bottom line describes the
functionality of the buttons for each menu.

The four pushbuttons are de-bounced in logic.
Further logic triggers an interrupt on the CPU
and an Interrupt Service Routine (ISR) queries
the state of the buttons and executes the
corresponding code.

2.15.3 Debugging

An In-System Programming (ISP) interface,
connected to a PC via an RS-232 port, allows
flash ROM programming, register

EE3 Group Project – ECG Telemetry System

11

interrogation, break points and many other
features common to serial debugging ports. An
RS-232 UART provides a second serial
interface through which higher-level functions
may be called, such as remote menus.

2.16 Logic
The peripheral devices are connected to the
processor via a common data bus, so address
decoding is required to ensure that the output
enables for each device are asserted at the
correct time. Logic is also required as a bridge
between buses of different width (IDE and
A/D). This could normally be achieved with
discrete logic devices such as the 74LS138
address decoder and the 74LS573 latch, but for
the purposes of prototyping it is much easier to
use a programmable logic device such as an
FPGA or CPLD. The surplus logic capability
can also be used to carry out the repetitive task
of heart rate detection and reduce loading on the
processor, explained in section 2.17. The device
chosen is an Altera Flex10K (EPF10K10LC84-
10).

2.16.1 Peripheral Addresses

Bits [15:4] of the address bus form the
peripheral chip select signals. The bottom three
bits are address inputs for peripherals which
require further addresses, such as the ATA
device.

Chip Select Function Subaddresses

CS0 (0x0000
to 0x000F) IDE NCS0 8 IDE regs

CS1 (0x0010
to 0x001F) IDE NCS1 2 IDE regs

CS2 (0x0020
to 0x002F)

IDE high
byte write None

CS3 (0x0030
to 0x003F) Multiplexer None

CS4 (0x0040
to 0x004F) LCD Control reg,

data reg.

CS5 (0x0050
to 0x005F)

BPM

BPM detector
low threshold,
high threshold,
result

CS6 (0x0060
to 0x006F) ADC None

CS7 (0x0070
to 0x007F) Unused None

2.17 Heart Rate Detection

Heart rates are calculated real-time as part of
on-screen user information and to trigger events
(such as tachycardia).

The heart rate should be updated at most every
two seconds in order for the rate to be displayed
on the ECG and account for heart rates at 30
BPM. In addition, the detector must record
heart rates between 30 to 285 BPM (8 bit
encoding, where 0x00 corresponds to 30BPM
and 0xFF is 285).

There are two possible ways of calculating the
heart rate form an ECG signal. One method
involves measuring the time interval between
the heart beats, while the other method involves
counting the number of heart beats in a given
time interval. The latter method must ensure
that at least two heart beats fall into the time
interval in order to calculate the heart rate.
Furthermore, to increase the update rate using
this method would involve dynamically
changing the time interval with heart rate and
making sure whole number of heart beat
periods fall into the time interval. This
restriction does not apply to the first method
and so the update rate will increase with heart
rate. Therefore, the block diagram for heart rate
detection shown in Figure 13 is based on
measuring the time interval between two
consecutive heart beats. The corresponding
circuit diagram is shown in Figure 18.

2.17.1 S-Wave Detection

The S wave detector must convert the discrete
ECG signal (sampled at 500Hz) into a series of
pulses where each pulse represents a heart beat.
This output signal can be created using
threshold detection and a state machine.

The R-R interval is commonly used by
physicians to calculate the heart rate. Hence, the
ECG signal must be filtered so that only the R
waves remain. This process can be carried out
using threshold detection, whereby an R wave
would be detected if the ECG signal went

Table 5: Peripheral addresses

EE3 Group Project – ECG Telemetry System

12

above a certain level. Furthermore, the accuracy
of threshold detection can be improved if the
amplitude of the R wave is very large in
comparison to the rest of the signal. The largest
amplitude can be observed through lead V2
which is due to the S wave and not the R wave.
Moreover, the S wave tends to keep its shape
during events like superventricular tachycardia,
making the S wave the easiest to detect.
Therefore, lead V2 will be used by the S wave
detector. On the other hand, pacemakers are
known to introduce a spike just after the S wave
on lead V2. These spikes can be removed by
using two thresholds to detect the S waves. The
two threshold approach has been implemented
with two comparators.

The outputs from these comparators are fed to a
synchronous state machine circuit, which has
been designed to produce a pulse (logic level 1)
lasting for one clock cycle when an S wave has
been detected. Therefore, the final output signal
gives the positions of the S waves.

2.17.2 S-S Interval

This block must count the number of clock
cycles in an S-S interval. The number of clock
pulses will enable the heart rate calculator to
work out the current heart rate.

The S-S interval block consists of a counter and
some D-type flipflops. The function of the
counter is to start counting on the falling edge
of an S wave pulse and reset on the falling edge
of the second S wave pulse. Hence, the
maximum possible count value is dependent on
the longest S-S interval. This interval occurs for
the lowest heart rate which is 30 BPM and so
the maximum count value is 1000 with a clock
frequency of 500Hz. Consequently a 10-bit
counter has been chosen. In addition, a 10-bit
D-type flipflop is used to store the final count
value.

2.17.3 Heart Rate Calculator

Here the final count value from the S-S interval
block is used to calculate the heart rate in beats
per minute (BPM). The formula used to
calculate the heart rate is shown in (1.1). In

order to implement this formula using logic, the
denominator must be calculated first before the
division can take place. However, it is possible
for the denominator to result in a floating point
answer, which will make the division process
very inefficient. Therefore, (1.1) was simplified
to whole number division as shown in (1.2).
This formula was implemented using the Alter
Divider ‘Megafunction’ whose output gives the
current heart rate.

60()Heart Rate BPM
Count Value Clock Period

=
×

 (1.1)

30000()Heart Rate BPM
Count Value

=

 (1.2)

See Appendix III for simulation results.

Heart Rate ECG signal
S Wave Detector S-S Interval Heart Rate Calculator

Figure 13 – Heart rate detection block diagram

EE3 Group Project – ECG Telemetry System

13

 Figure 14: Main schematic diagram

EE3 Group Project – ECG Telemetry System

14

 Figure 15: Bipolar amplifier schematic

EE3 Group Project – ECG Telemetry System

15

Figure 16: Precordial amplifier schematic

Figure 17: Nyquist filter schematic

_

+

_

+

_

+
100kO

100kO
100kO

100kO
100kO

Vin

18nF 15nF 12nF

18nF 18nF

_

+

_

+
100kO

100kO
100kO

100kO

6.8nF 2.2nF

33nF 120nF

_

+
100kO

100kO

10nF

27nF

Vout

A1 A2

A3 A4 A5

1v1

1v1

EE3 Group Project – ECG Telemetry System

16

3

Figure 18: Hardware rate detection schematic

EE3 Group Project – ECG Telemetry System

17

Software

3.1 Introduction

The purpose of the software system is to
provide a reliable and easy method of viewing
collected ECG data for the hospital staff. This
software has several important features:

• Data is stored safely on a server within a
hospital department.

• Data is automatically processed by the
server to find and classify heart conditions,
making diagnosis easy and fast. This is
described in section 4: Filtering, Parameter
Detection and Classification of the ECG
Waveform

• When a heart condition is found by the
server, the doctor responsible for that patient
is sent an email.

• A database of patients for the department is
stored in the system.

• A database of users of the system – doctors,
nurses, technicians - is stored.

• Tools are provided to allow members of
staff to review collected ECG data from any
location on the departmental network.

• Tools are provided to allow patients to
upload ECG data from their own home, or
from a local clinic.

The design decisions involved in arriving at and
implementing these features is discussed next.

3.2 Specification of Software System

The patient’s ECG data is stored as binary data
on a Compact Flash (CF) memory card. This
data can take several paths into the software
system running in the hospital from which they
are receiving care. If the patient has a personal
computer with a fast internet connection, they
can plug in the CF card and upload the data
from home. If not, they can visit their local
hospital / clinic and upload from there.

The system for managing the data must be
capable of receiving uploaded ECG data,
processing it in order to summarize the large
amounts of data collected, and storing it in a
reliable and safe place. The system must also
allow access to users of the data – the doctors
and technicians wishing to review the data. The
infrastructure for such a system is provided by
the hospital / clinic treating the patient.

To allow the users of the system to review the

data in a convenient manner, software which
accesses the data store and displays the
summarized ECG information in a graphical
format must be provided. It is important that
this software be easy to use and learn, and
allow fast diagnoses of heart conditions, as the
time of the staff reviewing the data is
expensive.

It is also important that this software system
delivers an acceptable level of performance. For
example, the data processing to summarize
information must not keep a user of the system
waiting for large amounts of time. The
constituent parts of the system must work well
together to make the system reliable and easy to
use and manage.

3.3 Design Issues and Possible Solutions

3.3.1 Software System Architecture

It is clear that to keep the patient’s ECG data in
a secure place, where it will not get lost or
corrupted, means having a departmental-level
centralised machine to store the data. The
security and backup policies of this machine
can be well defined. Storing all of the data in
one place means that many machines can
connect to the central machine to view data. If
this is not done - for example, if incoming data
is stored on the personal machine of the doctor
responsible for the patient, the data is at risk of
being accidentally deleted, will not be covered
by a consistent backup policy, and will not be
available to other members of staff on a
departmental network.

3.3.2 Choice of Programming
Language

A decision taken early on in the project was to
use the Java platform from Sun Microsystems.
The term ‘Java’ refers to a few technologies:
Firstly, there is the Java language, a strongly-
typed object oriented language, whose syntax
shares much in common with C++. This code is
not generally compiled into native instructions
for the target processor, but instead into
‘bytecode’ – a low level set of instructions,
which is interpreted at high speed on a ‘Java
Virtual Machine’ (JVM), allowing the same
program to run on many different operating
systems and hardware platforms without being
recompiledxiii.

3

EE3 Group Project – ECG Telemetry System

18

The Java platform was chosen for a variety of
reasons. The Java language has a clean and
logical syntax, which makes programming and
maintenance easier. The Java platform includes
a lot of functionality already implemented by
Sun, such as networking classes, which make
application development a lot easier. Finally,
Java programs are easy to distribute with a
technology called Java web start. This allows
Java programs to be installed from a website,
and automatically updates them when a new
version is available.

3.3.3 Software Components

Since there are many possibilities for getting
the patient’s ECG data into the system,
including uploading it from home, visiting a
local clinic to upload or visiting the hospital
department where the patient is receiving care
to upload, it makes sense to have a program that
can be easily distributed that can be used in any
of these situations to upload data. The machine
which this software runs upon will be called the
‘Patient’s Machine’.

If the data is stored on a ‘Centralised Machine’
within the department, potentially all members
of staff can connect to that machine to review
data, using their own machines (termed
‘Remote Machines’), the administrator can set
up the correct security privileges (i.e. which
users have access to the data, and whether they
are allowed to modify data or just read) and
have a reliable backup procedure so that the
data doesn’t get lost.

A piece of software for connecting to and
displaying the data from the centralised

database will be provided, termed ‘Front-End’
software. This will be used by members of
staff, such as doctors, nurses and technicians,
and will allow the user to select patients from
the system and view the summarized ECG data,
as well as the rest of the ECG data if necessary.

The centralised machine must process incoming
data to find irregularities in the patient’s ECG.
The method for doing this is described in the
ECG parameter and classification section
(section 4).

To act as an interface between the Front-End
and patient software, and the database and
centralised machine processing capabilities, a
third piece of software, termed ‘Back-End’
must be made. This must respond to two
situations: when the patient wishes to upload
their ECG data, the software must add this to
the database and process the data to classify
conditions, and it must provide services to the
Front-End software to allow data from the
database to be reviewed.

3.3.4 Operating Systems

It is likely that any Remote Machines used to
review the ECG data will be running Microsoft
Windows, as many technicians and doctors are
familiar with this environment. The centralised
machine may be running Microsoft Windows,
or possibly Linux or some other flavour of
UNIX. The development of software in Java
means that it should be a simple task to port the
Back-End application to any of these Operating
Systems, but for convenience in development,
Microsoft Windows will be used on the
Centralised Machine.

Figure 19: System Architecture

EE3 Group Project – ECG Telemetry System

19

3.4 Data Modelling

The system inherently deals with a lot of data.
The ECG data alone generated each time a
patient uses the device may be in the order of
hundreds of megabytes, and the system also has
to keep track of which patients are being
monitored, which members of staff are
responsible for them, when the patients have
used the device and so forth.

In short, the system deals with a complex data
system, which must be systematically modelled.
The high level ‘Entity-Relationship’ model,
shown in Figure 21, will be implemented as a
relational database.

The Entity-Relationship data model is based on
set theory, and is discussed in Appendix VI.
This model can be synthesised using a
relational database. Relational databases are a
simple and common form of database, and
consist of many linked tables of data. The
method used is straightforward, and described
in Silberschatz-Korth-Sudarshanxiv, 2.9
Reduction of an E-R Schema to Tables (p62).

3.4.1 Explanation of High-Level Data
Model

The explanation of the data model is as follows.
In the system there are patients to be monitored,
with various attributes that are needed such as
their name and ID (e.g. NHS number), and
custom attributes which can be defined by the
system administrator, probably including
address, G.P name and so forth.

There are also members of staff who will be
using the system. The most important attributes
are the log-in name and password. For
simplicity, a full security system will not be
implemented, so the password is simply stored
as plain text in the database. In reality, a more
robust verification system would have to be
implemented.

Every patient is related (hence full participation
of the patient entity set) to a responsible
member of staff. Members of staff may have
several or even no patients for whom they are
responsible.

Every time a patient uses the portable ECG, a
new ‘session’ is created in the database, with
attributes to identify which piece of equipment
was used, and the operating mode of the
equipment (event mode/ continuous mode).

Each new session of a patient has a unique
integer identifier beginning at 1.

The ECG data of these sessions is stored as
‘frames’ (Note that this is not the same as a
frame stored by the hardware). Each frame has
a fixed length of 1 second of ECG waveform
data. The date/time and channel name (e.g.
aVR, III etc.) are used to identify individual
frames, and the fixed amount of data containing
the waveform samples is stored as binary data.

An alternative way of storing the waveform
data is to identify individual cycles between
beats, and treat these as entities. This is a bad
idea, however: the algorithm to identify cycles
may need to be applied to the data more than
once with different arguments, and it is
therefore best to store the original data.

Alongside these frames, the ‘parameters’ of the
ECG waveform – e.g. heart rate, ST interval
etc. – are stored, with the associated date/time
of the measurement. Every measurement occurs
during a particular frame, and this is reflected in
the Parameter-Frame relationship. However, the
identifying entity set of the parameters entity
set is still the ‘session’ entity set.

A set of classifications of heart conditions
exists, and is represented by the entity set
‘Condition’. This has a description and a multi-
valued attribute representing the default
arguments used to classify the condition. The
name of the condition acts as primary key for
the entity set, as this uniquely identifies every
entity.

When processing to classify cardiac cycles
which have parameters falling out of certain
bounds is carried out, as described in section 4,
a cardiac cycle may be associated with a certain
condition via the “Conditions Classified”
relationship set. This flags up that there is
something that the responsible member of staff
must check in the data.

Two other mechanisms for flagging data occur:
comments added by members of staff, and
conditions detected by the ECG device, such as
the patient pressing the event button. These are
covered by the comment and event entity sets
respectively. These entities are all associated
with a particular session and identified by the
date/time at which they occurred, and are thus
related to the session entity set via an
identifying relationship. They are also
associated with frames of ECG waveform data

EE3 Group Project – ECG Telemetry System

20

Figure 21: Entity Relationship Model of Data

EE3 Group Project – ECG Telemetry System

21

corresponding to the time at which they are
recorded. They could also be associated with a
particular cardiac cycle: this is not however a
relationship that would be exploited by the
software, and so these relationships have been
omitted.

3.4.2 Implementation of Data Model

Once the data model has been implemented as a
relational database, it can be accessed using by
the Back End application using Open Database
Connectivity (ODBC). ODBC is a layer of
software between an application and a database
which allows the application to manipulate the
database using the widely used Structured
Query Language (SQL)xv. ODBC uses a
database driver, which translates the SQL
commands to the native commands of the
database. What this means in practice is that the
administrator can set up the database as an
ODBC source, and the application can use SQL
commands with the database, theoretically
without even knowing which database
technology is being used. It is therefore an
almost trivial matter to adapt the application to
use a different database technology.

For development, the Microsoft Access
database (MDB) technology will be used. This

allows easy manipulation of data using the
Microsoft Access program, and the Access
ODBC driver is included with the Microsoft
Windows platform being used for development,
cutting down cost. For the production
implementation of the system, it may be better
to use a higher performance database
technology, but this may also be more
expensive.

3.5 Patient Upload Software

The ECG data file has to be collected from the
patient’s machine. The best way of doing this is
to make a user-friendly wizard, of the format
shown below. This wizard should tell the user
what is going to happen, let the user know how
much progress has been made in uploading the
file, and let the user know when the process has
finished.

Both a Java application and a Java applet are
capable of doing what is required, in terms of
the user interface. The difference between a
Java application and a Java applet is that an
applet is loads in a web browser, and is
therefore extremely easy to distribute.
However, applets have limiting security
policies and cannot access files on the patient’s
machine, for example.

ECG Upload

< Back Next > Cancel

Welcome to the ECG Upload
Wizard
This wizards helps you submit your ECG for
diagnosis.

To continue, click Next.

ECG Upload

< Back Finish Cancel

Completing the ECG Upload
Wizard
You have successfully completed the ECG Upload
wizard.

You specified the following settings:

First Name: John
Middle Name: -
Last Name: Smith
Date: 10/02/2005

To close this wizard, click Finish.

ECG Upload

Personal Details

Enter Your Details

< Back Next > Cancel

John

Smith

10/02/2005

C://ECG/file.ecg

First Name

Middle Name

Last Name

Date

ECG File

ECG Upload

Uploading…….

< Back Next > Cancel

Figure 20: Patient upload software

EE3 Group Project – ECG Telemetry System

22

Now the issue of distribution in Java
applications can be resolved using Java Web
Start technology. Java Web Start is a
technology that allows Java applications to be
launched, deployed, and updated from a
standard web server, and is therefore well
suited to the requirementsxvi. All that the patient
has to do is connect to a webpage run by the
hospital department, and click a link to launch
the upload program.

Upon execution, this Java application will try to
find and cache the ECG data file on the CF card
to a temporary location on the hard disk,
allowing the patient to unplug the CF card and
carry on using the portable ECG device. The
patient will simply have to fill out their details
to successfully upload the ECG data file.

The volume of data the application would be
expected to transmit would be in the hundreds
of megabytes range. This data file is sent using
simple networking ‘sockets’xvii – the patient
upload software sends data over the internet,
using the TCP/IP protocol, to a particular ‘port’
(an opening for data) on the centralised
machine. The Back End software can read data
from this port as if it were a file on disk.

The use of Transmission Control Protocol /
Internet Protocol (TCP/IP) guarantees that the
data arrives at the centralised machine reliably
and in the correct order. On the Centralised
Machine, a socket has been ‘bound’ to a
predefined port, and the Back End software is
continually ‘listening’ for any incoming data.
When the ECG data is ready to be transmitted,
a new socket is created on the patient’s
machine. This socket is connected to the
‘listening port’ on the centralised machine. The
patient’s details are first sent with any
necessary authentication information, and then
the ECG data follows.

3.6 Back End Software

The Back-End software, running on the
centralised machine is used only by the patient
software and the Front-End software. The
Back-End is mainly responsible for managing
the database: it has to respond to a patient
wishing to upload their ECG data, and to a user
running the Front-End software from a network
location.

3.6.1 Patient Upload

When a patient sends their ECG data, there are
several processes which need to be run on this
data. Firstly, to make the data suitable for ECG
parameter detection, linear filtering to remove
out-of-band noise is applied – this may include
a band-pass filter and a notch filter to remove
mains noise. The first stage of condition
classification is to determine the ECG
parameters – heart rate, QRS duration etc. Then
classification can be performed by examining
these parameters.

Incoming Data

Store binary
file to temp

location

Read binary
file

Linear Filter
operations

Parameter
Detection

Store
Frames &

Parameters
to Database

Classification of
heart conditions

Conditions
Found?

Update
Database

Stop

Y

N

Delete
binary file

Send Doctor Email
Notification

Figure 22: Flow Diagram of actions when Data is
Uploaded

EE3 Group Project – ECG Telemetry System

23

When incoming data is accepted, the exact
binary file produced by the ECG device is
stored to a temporary location on the centralised
machine, and once the data has been
successfully stored into the database, this is
deleted. The database is then opened, and the
data enclosed is filtered. A certain amount of
this filtered data is kept in memory and used in
the parameter detection process, to save the
time penalty of having to access data from the
hard disk. The filtered data is split into chunks
of data called ‘frames’ and stored to the
database, and the detected parameters are also
stored in the database. Further explanation of
these processes is in section 4.

Classification of heart conditions is then
attempted by searching the database, and any
conditions found are stored. If conditions are
found, the member of staff responsible for that
patient will be sent a notification email, so that
they can check the data. This should be easy to
implement, as classes for Simple Mail Transfer
Protocol (SMTP) are already implemented for
Java, and distributed freelyxviii.

3.6.2 Data Requests from Front-End

The other task of the back-end software is to
deal with requests for data from the front-end.
All of the types of requests are listed below.
Most requests follow the order in the ‘deal with
request’ flow diagram.

The Back-End software keeps track of users by
creating a ‘review session’ (note this is
completely unrelated to an ECG session). This
allows commands such as ‘Get Next Frame’ to
be used, because the Back-End software tracks
which frame the user is currently viewing. The
session is begun when the Front-End sends the
‘Begin Review Session’ command to the Back-
End, and terminated either when a ‘timeout’ is
reached – no request has been sent for a
specified amount of time (e.g. 15 minutes), or
when the Front-End sends the ‘End Review
Session’ command.

Once a review session is initiated, the Back-
End waits for a request from the Front-End.
Many commands involve performing a query
on the database, for example selecting all
patients of a particular member of staff, and
passing this, to the Front-End over the
departmental network.

3.6.3 Specification for Interface
Between Front-End and Back-
End

Note that events include when the patient
presses the ‘event’ button on the device,
comments made by users and conditions found
by the computer.

3.6.4 Networking Implementation

There are many different ways for the Front-
End and Back-End to communicate over the
network: a low level protocol for
communication could be developed and socket-
based networking with TCP/IP could be used.
There are already well established, higher-level
ways of getting programs to provide network
services, including XML-RPC and RMI. XML-
RPCxix, or Extensible Markup Language
Remote Procedure Call, is a simple protocol to
allow remote clients to call functions on a
server. The function calls are coded as XML
documents, and exchanged using the HyperText
Transfer Protocol (HTTP), in the same way that
web pages are exchanged between a web-

Figure 23: Flow Diagram of Actions for Dealing
with a Front-End Request

EE3 Group Project – ECG Telemetry System

24

browser and a web-server. This is useful
because it is simple and implementations
already exist for the Java environment.

There is also the Remote Method Invocationxx
technology, which is already implemented in
the Java Class Library. This allows objects
sharing common methods and variables to be
passed between server and client (or Back-End
and Front-End in this case), using TCP/IP

networking. This has been chosen as the best
technology to use: RMI is native to Java and is
therefore logically integrated with the language,
and objects are used, so the Object Oriented
design approach can be continued with this part
of the program, as opposed to mixing
procedural and object oriented programming
techniques as is necessary with XML-RPC.

Action Description
Control
Begin review session Command to tell backend to expect requests for data
End review session Command to tell backend not to expect more requests for

data
Patient Database Overview Related Commands
Get all patients & info Get a table of all patient entities in the system, from the

database
Get patients & info belonging
to user

Get a table of all patient entities for which the user entity
has responsibility

Add patient Add new patient entity to the database
Update patient Update an existing patient entity with new attributes
Remove patient Delete a patient entity
Remove session Delete a session entity
Get database view permissions Return an object representing the security permissions (e.g.

can user see all patients in database, or just their own?) for
the user

Get sessions by patient Get the session entities related to a particular patient entity
Get events by session Get the event entities corresponding to a particular session

entity
ECG Review Tool Related Commands
Get next frame Return next frame of data for the currently viewed session

entity
Get previous frame Return previous frame of data for the currently viewed

session entity
Get frame by event Return the frame related to a particular event entity
Get frame by time Return the frame corresponding to a particular point in time
Get ECG view preferences Return an object representing how the user has his viewing

environment set up (e.g. background & waveform colour)
Get ECG view permissions Return an object representing the permissions the user has

to modify the data
Add comment Add a comment entity to the session entity
Remove comment Remove a comment entity
Mark event checked Flags an event as having been viewed by user
Mark event unchecked Flags an event as having not yet been viewed by user

Table 6: Front- and Back-End interface commands

EE3 Group Project – ECG Telemetry System

25

3.7 ECG Data Review Software

To design the Front-End software to display the
patient ECG data, the key problems fall into
two categories: the Human-Computer
interaction problem – how to display the data in
a self-explanatory and easy to view way, how to
make the software simple to use etc. – and the
communication problem – how to interact with
the centralised data source in order to access the
information to display. Users of the Front-End
include consultants, nurses and ECG
technicians.

3.7.1 Background Research

To solve the first problem, something must be
known about the target users, and products that
are already available. A visit was made to the
Electro Encephalography (EEG) department of
St. George’s Hospital in South-West London.
This department is responsible for monitoring
patients’ neural signals. While they do not
actually use ECG other than Lead I, the
technique for monitoring neural signals bears
greater resemblance to this project than existing
ECG systems. Many relevant things could be
found by inspecting their equipment and
speaking with their staff, such as what technical
level of software they are used to. The findings
of this visit are covered in Appendix VII.

3.7.2 Distribution of Front-End
Software

The Front-End software will be distributed with
Java web-start. If the workstation being used
already has the software installed, it is launched
the same as any other application on that
machine. If the software is not installed, the
user can go to an intranet webpage and click on
a link, and the software is simply downloaded
and installed automatically to the workstation.
Distribution of the software is therefore made
easy for the network administrator.

3.7.3 Displaying the Data

The key to presenting the ECG information to
the user is to show only information relevant to
what the user is doing, and to hide the rest.
Therefore, the Front-End software has four
logical sections:

• Log-in screen
• Patient database overview
• Patient session manager
• ECG waveform review tool

Firstly, the log-in screen allows the user to
verify his/her identity by supplying a username
and password, which are compared to
information stored in the database. This is a
simple form, with just a username and hidden
text password field, and needs no further
elaboration.

Figure 24: Patient Database View

EE3 Group Project – ECG Telemetry System

26

3.7.4 Patient Database Overview

Once the user is logged in, they are presented
with information about the patients in the
system. The user will be most interested in his
own patients, and particularly those who have
abnormalities in their ECG data. The user may
also wish to see patients who have another
member of staff responsible for them, for a
second opinion. Therefore it will be useful to
hide patients that do not belong to the user, but
allow them to see all patients if they wish.

The user must be able to go straight to parts of
ECG waveform data corresponding to
conditions found or times when the event
button has been pressed. It is also important to
make events and conditions which have not yet
been viewed easiest to see, so that no important
data that can be used to make a diagnosis is
missed.

It is also important to display enough
information about the patients so that the user
can easily identify the exact person they wish to
check. The user may also wish to carry out
basic administration tasks, such as adding a
new patient to the database or editing the details
of a current patient.

Once the user has selected the correct patient,
they may wish to go straight to any unchecked
conditions or events that have been identified,
or they may wish to have a clearer overview of
all of the data that has been collected from the
patient. Therefore, the unchecked events are
displayed in the database view, for the user to
quickly view. The user may display a separate
window which shows detailed information
about the sessions of a patient, and all of the
classifications, comments and events associated
with the sessions.

3.7.5 ECG Waveform and Parameter
Review Tool

The ECG review tool is used to display the
waveform data to the user, so that the user can
assess the shape of the ECG. The ECG
parameters, including heart rate, R-R interval,
QRS duration etc. as described in section 4
must also be displayed to the user.

The data must be displayed in a familiar and
simple way. The obvious way to display the
ECG waveforms is to draw an analogy with the
traditional paper plot of ECG, and show the
waveforms with a common horizontal time-

axis, and separated deflection axes, with the
channels spaced vertically as shown below.
This is how the EEGvue (see Appendix VII)
displays neural signals.

The user may wish to compare two different
sections of the ECG at different times. This
could be done by using a Multiple Document
Interface (MDI) application, where several
ECG windows are displayed within a parent
window. However, this has unnecessary
annoyances for the user – when the user wishes
to compare sections of ECG data, the channels
should be vertically aligned, and this would be
awkward with the standard MDI type interface.
A better way is to allow the user to open
multiple ‘panes’ – views on part of the ECG
waveform, which have fixed positions on the
main form, causing less bother for the user.

Since the user is most interested in pieces of
ECG data where irregularities have been found,
the events for a session should be displayed at
the same time as the ECG window, so that the
user can look at one event, then another to
compare and not have to switch between
windows.

Figure 25: Patient Session Manager

EE3 Group Project – ECG Telemetry System

27

The user may wish to ignore the classifications
made by the computer, and look for conditions
himself. There must be a simple way to step
through large amounts of data and allow the
user to quickly find the most important cycles.
The EEGvue software does this with CD-player
style controls, such as play, fast forward and
reverse. This scrolls the data across the screen
at the rate of recording of data, or a number of
times faster, or a number of times faster in the
reverse direction. This was found to be very
useful by the EEG technicians, and similar
controls could be used to view the ECG data.

The invisible part of the Front-End application
is the part that works behind the scenes
communicating with the Back-End over the
network. This uses RMI, where objects are
passed between applications using TCP/IP, and
is discussed in the Back-End section.

3.8 Concluding Note on Software

The software system is complex, and may cost
a lot of money to develop, test and debug to a
standard such that it can be used in practice.
The software part of the product is
fundamental, however, in making the user
experience easy and productive - and above all
reliable hardware - it will be this which plays a
key role in winning contracts for the product.
One of the best features of the software is the
ability to process the collected data and
automatically classify suspected heart
conditions, and email staff when something is
found. This will save staff a lot of time in
diagnosing heart conditions.

Figure 26: ECG Review Tool

EE3 Group Project – ECG Telemetry System

28

4 Filtering, Parameter Detection and
Classification of the ECG Waveform

4.1 Introduction

Long-term electrocardiogram (ECG)
monitoring plays an integral role in heart
disease analysis. The objective is to
automate the ECG event classification to
further enhance medical treatment. In order
to correctly classify the ECG signal, a
reliable extraction of the ECG parameters is
needed. Therefore the signal must first be rid of
noise in order to obtain accurate ECG
parameters. Hence the logical flow of data
would be to first remove as much noise as
possible from the ECG waveform, then detect
the appropriate parameters and finally, using
those parameters and the filtered waveform,
classify the ECG signal (see Figure 27).

4.2 Filtering of the ECG Signal

Prior to filtering the ECG signal, we must first
appreciate its true waveform. One period of the
ECG is usually broken into 5 segments – P, Q,
R, S and T (sometimes an additional U wave is
observed but this doesn’t affect the filtering
since the U wave contains approximately the
same frequency components as the T wave).
The Q, R and S parts of the ECG signal are
usually lumped into a single term known as
the QRS complex. The P and T waves are
defined from their positions with respect to
the QRS complex – the P wave occurring
prior to the QRS complex while the T wave
coming after. The theoretical ECG waveform
as seen from lead II is shown in Figure 28.
One should also note that the bandwidth of all
12 ECG leads is identical. Therefore if a filter
is designed to preserve this bandwidth, then
the filter can be used on all 12 leads. Even
though the filter may not be optimised for all
of the input leads, using one filter drastically
reduces the complexity of the system. Hence
it’s a design trade-off that we’re willing to
make since we can always compensate for this
in the parameter detection and classification
sections.

Now that we’ve defined the important segments
on the ECG signal we know exactly what to
eliminate in a noisy ECG. Figure 29 shows an
ECG waveform sampled at 500Hz that is
contaminated by 50Hz from power supplies and
low frequency muscle movements

(approximately 0.5Hz)xxi.

A filter window was designed in
Matlab/Simulinkxxii that generated the minimum
number of coefficients for an FIR filter to band-
pass all signals between 5 Hz and 40Hz. The
reason for this is that the typical frequency
components of an ECG signal range from about
10 to 25 Hzxxiii. In many algorithms high- and
low-pass filtering are done separately. The

Figure 27: Diagram showing the flow of data of an
ECG signal

Figure 28: Diagram of an ECG waveform
identifying the P, Q, R, S & T segments

0 500 1000 1500 2000 2500 3000 3500 4000 4500
-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7
Noisy ECG waveform

Sample

A
m

pl
itu

de

R

T

P

Figure 29: Noisy ECG

EE3 Group Project – ECG Telemetry System

29

filtered signal is then used for parameter
detection and ECG classification. Figure 30
shows the filtered signal.

The straying baseline is difficult to remove
using only linear techniques (furthermore the
input signal is considered very noisy as
compared to the input of conventional ECGs
and was simply used as a demonstration
exercise). The adaptive non-linear and linear
techniques described inxxiv give results of a
larger signal-to-noise ratio (SNR) output.
However, as stated earlier, by using all 12 leads
we can compensate for this straying baseline
error in the parameter detection and ECG
classification section.

4.3 Parameter Detection

The main aim in detecting certain parameters is
to provide the medical practitioner with a layout
similar to that of a standard ECG reportxxv. The
description should always be given in the same
sequence:

1) Rhythm
2) Conduction intervals
3) Cardiac Axis
4) A description of the QRS complexes
5) A description of the ST segments and T

waves.

4.3.1 Rhythm and QRS Complexes

The rhythm is normally given in beats per
minute (BPM). However, any irregular heart
beats must also be detected. Therefore the heart
rhythm must be calculated on every cycle.
According to the paper written by K.F. Tanxxvi
the most efficient algorithm produced thus far
for R-R interval detection is the “So and Chan”
methodxxvii. This algorithm not only gives the
R-R interval but also involves QRS detection.

The “So and Chan” QRS detection method was
designed for real-time ambulatory cardiac
monitoring. Hence the computational
requirement is kept to a minimum level without
compromising its accuracy. The method is
described as follows xiv. Let X[n] represent the
amplitude of the sampled ECG signal and n the
sample number. Then define slope[n] as:

[] 2 [2] [1] [1] 2 [2]slope n X n X n X n X n= + + + − − − −

The slope threshold is given by:

__
16

threshold parameterslope threshold maximum= ×

When two consecutive ECG data samples
satisfy the condition that
slope[n]>slope_threshold, then the onset of the
QRS complex is detected. The parameter
“threshold_parameter” can be set as 2, 4, 8 or
16. After the detection of the onset of QRS
complex, the maximum point (maximum) is
searched for and taken as the R point. Maximum
is then redefined as:

_
first_max maximummaximum maximum

filter parameter
−

= +

Where: first_max = height of R point – height
of QRS onset

NB. The initial maximum is the maximum slope
within the first 500 data points. The parameter
filter_parameter can be set to 2, 4, 8 or 16. For
QRS complexes polarised in the opposite
direction (e.g. V1, V2, etc.) the method is
slightly adjusted as described in xv.

Using this method we can detect the R-R
interval (i.e. the heart rate) and the QRS
duration.

0 500 1000 1500 2000 2500
-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5
ECG waveform after initial filter

Sample

A
m

pl
itu

de

R

T

P

straying
baseline

Figure 30: Filtered ECG waveform

EE3 Group Project – ECG Telemetry System

30

4.3.2 T- and P-Wave Detection
(used to obtain the ST
segment and the conduction
intervals)

The method described by Joeng algorithmxxviii
will be used to detect T and P waves. Firstly a
significant point set is constructed by
applying a 9-point derivative to the ECG
signal X[n]:

4

4

1() . []
60 i

F n i X n i
=−

= +∑

(Where n is the sample number)

The consequence of constructing this
significant point set is quite useful (see
Figure 31).

From the graph one can clearly recognise that
the straying baseline is removed. Furthermore
whenever there is a drastic change in slope (i.e.
P and T wave onset and offset and QRS
complex) the output of the Significant Point Set
shows up as a turning point. Thus our problem
is now reduced to evaluating turning points on a
far less noisy signal. The question now is
differentiating the turning points. This is quite
easily solved since we know that the P wave
occurs before the QRS complex and the T wave
occurs after. Furthermore the “So and Chan”
algorithm tells us the location of the QRS.

The T-wave is expected within a specific time
window. The start and duration of the window
depends on the R-R intervalxxix.
If the RR-interval > 0.7s
 TwaveWindowBegin = 0.08s after QRS end
 TwaveWindowEnd = 0.44s
If the RR-interval < 0.7s
 TwaveWindowBegin = 0.04s after QRS end
 TwaveWindowEnd = (0.7 RR-interval – 0.06)s

Within this window, the minimum, maximum
and order of the slopes of the derived function
are important for detecting the T-wave. The
slope needs to be at least 0.006 mV/s for a T-
wave to be detected.

The P-wave is located between the end of the
T-wave and the beginning of the QRS complex.
The detection rule for a P-wave is a positive
slope followed by a negative slope. The
magnitude of both slopes must be greater than
0.004 mV /s. The algorithm searches for this
combination until the start of the QRS complex.
To ensure that a U-wave is not falsely detected

as a P-wave, the last detected wave before the
QRS complex is the P-wave.

4.4 Cardiac Axis

Determining whether the cardiac axis is normal
or there is left/right axis deviation is quite
straightforward. For this we would simply use
leads I, II and III xii. For a normal ECG the
maximum amplitude of the signal is positive
(predominantly upward) in all three leads with
the deflection greater in II than in I or III. For
right axis deflection the maximum amplitude of
lead I is negative (predominantly downward)
and the deflection in III would become more
positive than II. Finally for left axis deflection
the maximum amplitude in III is negative and
in severe cases the maximum amplitude in II is
also negative. Therefore, given an ECG signal,
it’s quite straightforward to write an algorithm
to describe the cardiac axis since one would
simply evaluate the maximum deviation from
the baseline for leads I, II and III.

4.5 Classification

There are several examples of ECG classifiers.
Acharya et al (2004)xxx outlined a myriad of
classifiers using neural network techniques,
spectral entropy, Poincare plot geometry,
Lypunov exponent and fuzzy algorithms. Our
aim in this section, however, is not to diagnose
any diseases but to simply flag any
irregularities that occur in the ECG and
possibly suggest some likely diseases. The final
diagnosis is solely dependent on the medical
practitioner. This not only reduces
computational complexity but prevents

0 100 200 300 400 500 600 700
-1

-0.5

0

0.5

1

1.5

Samples

A
m

pl
itu

de

Magnified 9-point Derivative Plot

ECG

9-point
Derivative

Figure 31: Graph Showing ECG superimposed with
the Significant Point Set

EE3 Group Project – ECG Telemetry System

31

misdiagnosis by relying on the doctor’s
expertise.

Since we have the conduction intervals for
every beat in the ECG and the cardiac axis
deviation, the doctor can search the output of
the parameter detection section and determine
whether the R-R, PR, ST, QRS, P and T
durations are normal (based on the patient’s
case). This would mean that all waveforms that
are considered to be abnormal would be flagged
(See Figure 32).

Special algorithms will be written for
arrhythmia cases based on the thresholds
described by Professor John Hampton (xiii, xxxi).
This algorithm would simply traverse the array
and determine whether each element is within a
given interval. Some of the diseases that would
be recognised include sinus tachycardia, sinus
bradycardia, atrial escape, nodal escape,
ventricular escape, atrial flutter, ventricular
tachycardia, atrial fibrillation and ventricular
fibrillation. If time permits further algorithms
will be written to determine 1st, 2nd and 3rd
degree heart block and left and right bundle
branch blocks. It should be noted that the
detection algorithms would be trivial once the
parameters are detected correctly. This is
because one is simply searching for the given
irregular conduction intervals along with the
cardiac axis deviation that are unique to a
particular disease (xiii).

Figure 32: Arrays containing parameters for each ECG period
(obtained for the parameter detection section)

EE3 Group Project – ECG Telemetry System

I

Appendix I: Nyquist Filter Simulation Results
A full simulation of the filter was made in PSPICE.

Figure 33: Filter magnitude response

Figure 34: Filter phase response

EE3 Group Project – ECG Telemetry System

II

Appendix II: Calculations for Butterworth filter

Order of filter (N), calculated from values for Amin, Amax, Ws (stopband frequency) and Wp (passband frequency)
from the following equation,

 N = log [(10 Amin/10 – 1) / (10 Amax/10 – 1)] / 2 log (Ws/ Wp)

Substituting values Amin = 88dB, Amax = 0.5dB, Ws = 250Hz, Wp = 100Hz

 N = 10.192
 = 11

Next the value of Wo was calculated from the following equation,

 Wo = Ws / (10 Amin/10 – 1)1/2n
 = 1.599*10-8

From a standard lookup table the values of Q for the Butterworth filter poles were obtained. They are 0.5, 0.52,
0.59, 0.76, 1.20 and 3.51. The realization of the circuit to meet the specifications will be in the block diagram
shown.

Each block represent the specifications a second order stage (the 1st being a first order stage to form an odd order
filter).

The first 2 stages of the non-inverting Sallen and Key configuration with a gain of 1 is as shown below.

 GND

 C = 1/2Q1
 R R - R R -

 + +
 1
 C = 2Q1
 GND
 1st order stage 2nd order stage x 5

The resistor values are normalized to 1 and the capacitor values are determined by the Q value for each stage. To
complete the design all the values are scaled by a scaling factor determined by Wo and the resistor value, R0 as
shown below. Ro is chosen to be 100 kilo ohms.

 Scaling factor, K = 1/ WoR0 = 1.599*10-8

1 1 1 1

Figure 36: Sallen and Key cascading configuration

Wo= 635.35Hz

 Q1 = 0.5
Wo= 635.35Hz

 Q2 = 0.52
Wo= 635.35Hz
 Q3 = 0.59

Wo= 635.35Hz
 Q4 = 0.76

Wo= 635.35Hz

 Q5 = 1.20
Wo= 635.35Hz
 Q6 = 3.51

 Figure 35: Filter block diagram

EE3 Group Project – ECG Telemetry System

III

Appendix III: Hardware Rate Detection
Simulation Results
To test the heart rate circuit, a counter called
signal_counter was used to create an ECG
signal from lead V2. Also for testing purposes,
the lower and upper thresholds were set to -5
and -2 respectively. The simulation results are
shown in Figure 37. Restrictions in the
simulation program meant that a mock-ECG
signal with rates of a few tens of BPM was
impossible; the lowest possible was in the range
of thousands of BPM. Taking this into account,
the system performs rate detection accurately.
Initially signal_counter counts down to -5,
which causes the output of the S wave detector
(S_waves pin) to go high for one clock cycle.
This represents the first S wave. The S-S
interval block now begins to count the number
of clock cycles until another S wave is
signalled. Next signal_counter produces a spike
that does not result in an S wave being
signalled. After a while another S wave is
signalled and the final count value is stored
(final_count pin). Finally, the heart rate
calculator outputs the corresponding heart rate
to final_BPM pin. The observed heart rate is
very high because the S-S interval was kept
very small for testing purposes.

The next stage of circuit development includes:

1. Working out the actual threshold values
for a real ECG signal through research
and experiments.

2. Testing the heart rate circuit using a
real ECG signal.

3. Reducing the amount of logic elements
used by the heart rate calculator, in
order to improve efficiency.

Appendix IV: Further Information on
the ATA Bus

ATA Registers

The disk controller, which is built into an IDE
drive, takes care of a lot of issues involved in
disk access. It consists of ten registers:

• Data I/O register: used for data block
transfers to and from the device.

• Error information register (read) or
write precompensation register (write)

• Sector counter register: the number of
sectors to read at any one time

• Start sector register: the sector to begin
reading

• Low byte of cylinder register

• High byte of cylinder register (only two
bits)

• Head and device select register: selects
head, sector size and addressing type

• Two command / status registers

• Active status register: further
information to the status registers

In broad terms, there are two ways of
addressing data on a disk. The smallest
addressable division is the sector, which is
almost invariably 512 bytes long. In the old
CHS addressing mode, the disk was split up
into cylinders, heads and sectors, so some
knowledge of the disk geometry was required
before the disk could be used. There was a
further problem with this system: the register
allowed for 16 heads, 256 sectors per track and
1024 cylinders (a track is the length of all the
sectors on one concentric ring on one platter).
The total addressable size was therefore 16 x
256 x 1024 x 512 = 2GB.

Figure 37: Hardware Rate Detection simulation results

EE3 Group Project – ECG Telemetry System

IV

The modern approach is the LBA (logical block
addressing) system. The disk controller makes
the disk appear as a large array of sectors
spanning the entire length of the disk. The
sector number register holds the lowest 8 bits,
the two cylinder registers hold the middle 16
bits and the highest 4 bits are kept in the head
and device register, making a total of 28 bits
worth of 512-byte sectors (137GB in total). Bit
6 of the head and device register selects CHS /
LBA modus. The register names remained for
historical reasons, despite the CHS system
being deprecated in the ATA-3 specification
(version 8 is the latest at the time of writing).

8- to 16-bit Bridge

A small problem arises when the IDE bus
(which is inherently 16 bits wide) is used with
an 8-bit microcontroller. There are three ways
round this:

• Use the IDE 8-bit transfer mode

• Connect the remaining 8 lines up to a
spare port on the CPU

• Use latches to latch 8 bytes for reading
/ writing later

The first is unfeasible as the 8-bit transfer mode
is not supported by modern devices. The second
is a possibility but wastes CPU resources. All
that remained was the third option. In this
implementation, a pair of latches forms a ‘ring’
buffer, with the high order byte on one side and
the low order on the other, creating a bridge
between the high- and low-order byte-wide bus.
A 16-bit write operation runs as follows:

1. CPU writes high-order byte to latches
2. CPU writes the low-order byte to the IDE

bus.
3. During the low-order write cycle in step

#2, the output-enable of the high-order
latch is brought high, causing the high-
order byte written in step 1 to be asserted
on the IDE bus D8-D15 lines.

4. 16-bit write finished when step 2 (low-
order byte access) completes.

5. Return to step 1 for next 16-bit write.

By creatively using the latch line of the two
latches as a WR and output-enable line as a
RD, it was possible to create this bridge or
dual-port RAM functionality in a minimum of
discrete logic parts. Some combinatorial logic
simply transmits the CPU’s RD and WR lines

to the proper device (IDE bus or latches) with
the proper inversion (active-high or active-low)
based on the memory address being accessed.

(A similar problem occurs with the 12-bit A/D
converter, but has a simpler solution because
only the reads are 12-bits long).

Appendix V: FAT Filesystems

At the very beginning of the disk (sector 0) is
the Master Boot Record (MBR). These 512
bytes contain bootable code, including
information about the drive’s parameters, and
partition table entries which point to partition
locations. In the case of this project there is no
bootable code and only one partition.

With a single-partitioned disk, the disk layout
would be as follows:

Figure 38: Hard disk geometry

Executable code

Partition entry 1

Partition entry 2

Partition entry 3

Partition entry 4

Boot record signature

446
bytes

16 bytes

16 bytes

16 bytes

16 bytes

2 bytes

Figure 39: Master Boot Record

EE3 Group Project – ECG Telemetry System

V

At the beginning of a partition, after the FAT
boot record, is the FAT table. In FAT partitions,
the disk is divided up more coarsely into units
called clusters. These vary in length depending
upon the size of the disk and the type of FAT
used (12, 16 or 32 bit), but are typically 2K-
32K in size. The FAT table is essentially a large
singly-linked list which maps out every cluster
and where files spanning more than one cluster
are located on the disk. The following codes are
allowed in a FAT entry:

FAT Code Range Meaning

0000h Available Cluster

0002h-FFEFh Used, Next Cluster in File

FFF0h-FFF6h Reserved Cluster

FFF7h BAD Cluster

FFF8h-FFFF Used, Last Cluster in File

Take the example of a 17KB file, which would
span 5 clusters at 4KB/cluster, despite the fifth
cluster only containing 1KB of data –
remember that a cluster is the smallest
addressable unit. Assume it is fragmented and
using the FAT16 system so that it occurs in
clusters 0x0010, 0x0011, 0xC152, 0xC153 and
0xF25C. The corresponding FAT table entries
would be:

There are limitations to the different types of
FAT used. FAT12 is limited to a maximum disk
size of 16MB and is far too restrictive for our
purposes. FAT16 is easier to use than FAT32,
but requires large cluster sizes to make use of
large disks. This can lead to inefficiency for the
reasons outlined in the previous example. The
following table describes the efficiency for
different cluster sizes in the FAT16 system
when the disk is filled with 3K files:

FAT32 uses 4-byte rather than 2-byte partition
entries, allowing for many more clusters to be
addressed. This reduces the cluster size for any
given disk and increases efficiency. The
following table makes a comparison with
FAT32 efficiency:

FAT entry Points to

0x0010 0x0011

0x0011 0xC152

… …

0xC152 0xC153

0xC153 0xF25C

… …

0xF25C 0xFFFF (EOF)

Cluster Size Efficiency Disk Size

2K 98.4% 0-127 MB

4K 96.6% 128-255 MB

8K 92.9% 256-511 MB

16K 85.8% 512-1023 MB

32K 73.8% 1024-2047 MB

64K 56.6% >2047 MB

Table 8: Example FAT entries

Table 9: Storage efficiency in FAT16
systems for 3K files

Master Boot Record

FAT Boot Record

FAT Tables

Root Directory

Data

Figure 40: Disk Layout

Table 7: FAT codes

EE3 Group Project – ECG Telemetry System

VI

Disk Size Cluster Size Efficiency

>260MB 4K 98.4%

>8GB 8K 96.6%

>60GB 16K 92.9%

>2TB 32K 85.8%

As mentioned earlier, the differences between
FAT16 and FAT32 are far greater than just
different sized FAT entries. FAT32 allows for
greater compatibility with other filesystems,
greater flexibility with the location of root
directories and many other features which are
useful on a PC, but would be redundant in this
project. There is also a lower limit of 512MB
for FAT32 disks. The inefficiency of FAT16
for large disks is largely immaterial when large
files are stored on it, since wasted space only
occurs at the very end of the file. The ECG
device will write generally large files so it was
decided that a FAT16 filesystem would be used
initially. Support for fragmented files will be
limited at first and if time becomes restricted
then perhaps only contiguous (i.e. non-
fragmented data) may be written. If further time
permits then a FAT32 driver will be written,
allowing for partitions above the FAT16 2.5GB
limit to be used.

Appendix VI: Entity Relationship Data
Model

The Entity-Relationship data model is described
thoroughly in Silberschatz-Korth-Sudarshan
xiv, “Entity-Relationship Model”, chapter 2,
p27, and is summarised here.
The key concepts are ‘entities’ – real world
objects – which have ‘attributes’, and
‘relationships’ with other entities. Similar
entities with different valued attributes are
contained in ‘entity sets’, and the entities
contained have common relationships with
others, contained in ‘relationship sets’. For
example, there are two entity sets patient and
staff in the system. The patient entity set
contains patient entities, with attributes such as
name and NHS number, while the staff entity
set contains staff entities with attributes such as
log-in name and real name. These entity sets are
related by the relationship set “Responsibility”,

which is a one-to-many relationship from
patient to staff, showing which member of staff
is responsible for which patient. The
relationship is one-to-many, because each
member of staff may be responsible for many
patients, but each patient has exactly one
member of staff who is responsible for them.

Patient and staff are examples of strong entity
sets – either an attribute or combination of
attributes can uniquely identify each entity,
known as the primary key of the entity set.
Here, the ID attribute (e.g. NHS number) serves
to identify each patient individually. An entity
set without a primary key is known as a weak
entity set. All entity sets must therefore have an
‘identifying relationship’ with a strong entity
set whereby the union of the primary key with
some attributes, known as discriminating
attributes, of the weak entity set uniquely
defines every entity in the weak entity set.

For example, the session entity set is a weak
entity set because there exists no combination
of its attributes which can uniquely identify
each of its entities. Two patients may have used
the same device twice and in the same mode,
for example. In this case, each session cannot
be uniquely identified, so the patient ID has to
be taken with the session number to uniquely
identify each session entity.

Appendix VII: EEG Department Visit

The software system for Electro
Encephalography (EEG) department of St.
Georges Hospital in South-West London was
evaluated.

The software used to view EEG signals is
EEGvue and NicVue, from Nicolet
Biomedicalxxxii, part of a Viasys Healthcare, a
large international medical equipment
company. The users of the software include
EEG technicians, nurses and doctors.
The NicVue software is a patient database. The
scope of the database is limited to the
department, so all of the department’s patients
appear in the database, but patients from other
hospitals around the country do not.

The main function of the EEGvue software is to
view the neural signals while they are being
captured from a piece of hardware attached to
the patient. Typically a patient will be
monitored, and a technician will be operating a
workstation allowing them to view the patient’s
electrical neural signals in real-time. The

Table 10: Storage efficiency in FAT32 systems
with 3K files

EE3 Group Project – ECG Telemetry System

VII

software allows the signals to be captured and
reviewed at a later time.

Before this system was computerised,
technicians would review a pen plot of the
signals on a piece of paper. To remain familiar,
EEGvue displays the signals almost exactly as
they would have been displayed on paper. All
of the signals are displayed over the same
period of time. This method of displaying the
signals makes them instantly recognizable by a
technician or doctor studying them.

The EEGvue software contains other useful
features. The technician can add comments, and
use basic filters such as lowpass and notch, to
remove high frequency and mains noise
respectively.

One of the most useful features included in the
software, according to the technicians
interviewed, is the ability to use video-style
controls to view the EEG signals: there is a play
button, which advances the time of the signal
displayed at a real-time rate, as well as a fast-
forward and reverse button. This allows the
experienced technician to quickly step through
data spanning a large amount of time, and
diagnose conditions within minutes.

Overall, the technicians are very happy with the
software: because the whole data acquisition
and review software system fits together very
well, and the software is simple yet powerful
enough, the users can accomplish tasks such as
diagnosis very quickly.

The visit to St. George’s Hospital was made on
Friday 17th December 2004. The member of
staff consulted was Pat Moore, Senior Chief
Technician of the EEG dept.

EE3 Group Project – ECG Telemetry System

VIII

References

i D.Dobrev. Two Electrode low supply voltage electrocardiogram signal amplifier
http://www.iee.org/Publish/Journals/ProfJourn/MBEC/20043858.pdf
ii Continuous 12-lead ECG using WT100C Wilson Terminal
http://www.biopac.com/AppNotes/ah206/wilson.htm
iii WinAVR GNU-based AVR compiler
http://sourceforge.net/projects/winavr
iv The Ponyprog page
http://www.lancos.com/prog.html
v T13 Technical Committee – AT Attachment
http://www.t13.org/
vi Paul’s 8051 Code Library, IDE Interface
http://www.pjrc.com/tech/8051/ide/
vii Wesley’s PIC Pages – IDE Controller
http://www.pjrc.com/tech/8051/ide/wesley.html
viii Procyon AVRlib file index
http://hubbard.engr.scu.edu/embedded/avr/avrlib/docs/html/files.html
ix The FAT32 Reference Page
http://www.project9.com/fat32/
x Dobiash FAT Info
http://home.teleport.com/~brainy/
xi The FAT Filesystem
http://www.win.tue.nl/~aeb/linux/fs/fat/fat.html
xii Long Filename Specification
http://home.teleport.com/~brainy/lfn.htm
xiii Campione-Walrath. Java Platform Overview. Sun Microsystems website.
http://java.sun.com/docs/books/tutorial/getStarted/intro/definition.html.
xiv Silberschatz-Korth-Sudarshan. Database System Concepts 4th ed. McGraw Hill 2002.
xv ODBC Overview. Microsoft Developer Network.
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/odbc/htm/odbcintroduction_to_odbc.asp
xvi Java Web-Start FAQ. Sun Microsystems website.
http://java.sun.com/j2se/1.5.0/docs/guide/javaws/developersguide/faq.html
xvii Cadenhead-Lemay. Teach Yourself Java 2 in 21 Days 4th ed. SAMS publishing 2004. “Sockets”, ch17, p475.
xviii Javamail API FAQ. Sun Microsystems website. http://java.sun.com/products/javamail/FAQ.html
xix Cadenhead-Lemay. “Creating Web Services with XML-RPC”, Appendix F, p721.
xx Cadenhead-Lemay. “Serializing and Examining Objects”, ch16, p457.
xxi Technical University of Denmark, Department of Electrical and Electronic Engineering,
http://www.oersted.dtu.dk/31610/?exercises/exercise4.html
xxii The MathWorks, Inc., http://www.mathworks.com
xxiii B. Kohler, C. Hennig and R. Orglmeister, “The Principles of Software QRS detection”, IEEE Engineering in
Medicine and Biology, January/February 2002
xxiv A. Yilmaz, M.J English, “Adaptive non-linear filtering of ECG signals: dynamic neural network approach”,
Artificial Intelligence Methods for Biomedical Data Processing, IEE Colloquium, pages 1-6, 26 Apr 1996
xxv John R. Hampton, “The ECG made Easy”,5th Edition, Churchill Livingstone
xxvi K. F. Tan, K. L. Chan and K. Choi, “Detection of the QRS complex, P wave and T wave in
electrocardiogram”, IEEE Engineering in Medicine and Biology.
xxvii H.H. So, K. L. Chan “Development of QRS detection method for real-time ambulatory cardiac monitor”,
Proc 19th Annual International Conference IEEE EMBS, Chicago, USA, pages 289-292, 1997
xxviii H. K. Joeng, K. K Kim, S. C. Hwang and M. H. Lee, “A new algorithm for P-wave detection in the ECG
signal”, Proceedings of the Annual International Conference of t he IEEE Engineering in Medicine and Biology
Society, Vol. 1 , pages 42-43, 1989
xxix P. Laguna, et al., “New Algorithm for QT Interval Analysis in 24-hour Holter ECG: Performance and
Applications”, Medicine and Biology in Engineering and Computing, Vol. 28, pages 67-73, 1990.
xxx R. Acharya, A. Kumar, P. S. Bhat, C. M. Lim, S. S. Iyengar, N. Kannathal, S. M. Krishnan, “Classification of
cardiac abnormalities using heart rate signals”, Medicine and Biology in Engineering and Computing, pages
288-293, 2004.
xxxi John R. Hampton, “150 ECG Problems”, 2nd Edition, Churchill Livingstone.
xxxii Nicolet Biomedical - http://www.nicoletbiomedical.com/

